GPS im Kopf?

RUB » Pressestelle » Presseinformationen » Kategorie Allgemeines » Presseinformation 277
Nummer 277 - Bochum, 15.09.2011

GPS im Kopf?

Rhythmische Aktivität von Zellen kodiert Position im Raum

Journal of Neuroscience: RUB-Forscher entschlüsselt Frequenz der Zellaktivität

Wie die rhythmische Aktivität von Nervenzellen die Navigation unterstützt, hat Prof. Dr. Motoharu Yoshida vom Neural Dynamics Lab der Ruhr-Universität Bochum mit Kollegen der Boston University untersucht. Die Forscher zeigten, dass Zellen im entorhinalen Kortex, der für die Navigation wichtig ist, mit einer individuellen Frequenz aktiv sind und dass diese Frequenz von der genauen Position der Zelle abhängig ist. „Bisher ging man davon aus, dass die Frequenz durch die Interaktion mit Zellen in anderen Hirnregionen moduliert wird“, so Yoshida. „Unsere Daten weisen jedoch darauf hin, dass das eventuell nicht der Fall ist. Jede Zelle könnte eine feste Frequenz haben. Möglicherweise brauchen wir also neue Modelle, um die Bedeutung der rhythmischen Aktivität für die Navigation zu beschreiben.“ Die Wissenschaftler berichten im Journal of Neuroscience.

Rhythmische Hirne finden ihren Weg

„Das Gehirn scheint die Umwelt wie eine Karte abzubilden, mit perfekten Distanzen und Winkeln“, erklärt Yoshida. „Wir sind zwar keine Roboter mit einem GPS-System im Kopf, aber die rhythmische Aktivität der Neurone im entorhinalen Kortex scheint eine Art Karte zu erzeugen.“ Einzelne Nervenzellen in dieser Hirnregion repräsentieren durch ihre Aktivität unterschiedliche Positionen im Raum. Befindet sich ein Tier an einem bestimmten Ort, feuert eine bestimmte Nervenzelle. Die rhythmische Aktivität jeder Zelle könnte es uns ermöglichen, eine Gruppe von Positionen im Raum zu kodieren, die in einem regelmäßigen Gitter angeordnet sind. Computersimulationen aus früheren Studien legten nahe, dass Signale von Zellen aus anderen Hirnregionen die rhythmische Aktivität der Neurone im entorhinalen Kortex beeinflussen. Diesen Zusammenhang überprüften Yoshida und seine Kollegen anhand von elektrophysiologischen Messungen bei Ratten und Computersimulationen.

Den Rhythmus der Zellen in Zahlen fassen

Um die Eingangssignale anderer Zellen zu simulieren, variierten Yoshida und seine Kollegen die Spannung an der Zellmembran (Membranpotenzial). Eine Verschiebung des Membranpotenzials vom Ruhezustand in den positiven Bereich kommt dabei einem Eingangssignal einer anderen Zelle gleich. Das Membranpotenzial der Zellen im entorhinalen Kortex ist jedoch nicht konstant, sondern nimmt abwechselnd zu und ab; es oszilliert. Die Wissenschaftler bestimmten, wie schnell sich das Membranpotenzial änderte (Frequenz) und wie groß diese Änderungen waren (Amplitude), wenn sie das mittlere Membranpotenzial verschoben, um das das Potenzial oszillierte.

Position bestimmt Frequenz

Im Ruhezustand der Zellen zeigte das Membranpotenzial geringe Schwankungen in einem breiten Frequenzbereich. Verschoben die Forscher das Membranpotenzial in den positiven Bereich, simulierten also das Eingangssignal einer anderen Zelle, verstärkten sich die Schwankungen. Außerdem erfolgten die Schwankungen nun mit einer bestimmten Frequenz, die abhängig von der Position der Zelle im entorhinalen Kortex war. Das Membranpotenzial von Zellen im oberen Bereich der Hirnregion oszillierte mit einer höheren Frequenz als das von Zellen im unteren Bereich. Die Zellen behielten diese Frequenz bei, auch wenn die Forscher den Mittelwert des Membranpotenzials weiter veränderten, d.h. ihre rhythmische Aktivität war weitestgehend unabhängig von den Eingangssignalen anderer Zellen.

Titelaufnahme

Yoshida, M., Giocomo, L.M., Boardman, I., Hasselmo, M.E. (2011) Frequency of Subthreshold Oscillations at Different Membrane Potential Voltages in Neurons at Different Anatomical Positions on the Dorsoventral Axis in the Rat Medial Entorhinal Cortex, The Journal of Neuroscience, 31, 12683–12694, doi: 10.1523/JNEUROSCI.1654-11.2011

Redaktion

Dr. Julia Weiler
Pressestelle RUB

Weitere Informationen

Prof. Dr. Motoharu Yoshida, Neural Dynamics Lab, Fakultät für Psychologie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-27138
motoharu.yoshida@rub.de

 

Zelle

Zelle im entorhinalen Kortex

Download (1.0 MB)


Messungen im entorhinalen Kortex

Elektrophysiolgische Messungen in einer Zelle im oberen Bereich des entorhinalen Kortex (dorsale Zelle, links) und im unteren Bereich (ventrale Zelle, rechts). Beim niedrigsten untersuchten Membranpotenzial (A2, B2) zeigen die dorsale und ventrale Zelle schwache Schwankungen im Membranpotenzial in einem breiten Frequenzbereich. Die unteren Grafiken (A5, B5) lassen mehrere Frequenzmaxima in den frühen Zeitfenstern erkennen (schwarze Kreuze). Wenn das Membranpotenzial zu positiveren Werten verschoben wird (A3, A4, B3, B4), werden die Schwankungen des Membranpotenzials stärker (größere Amplituden). Das Potenzial der dorsalen Zelle (links) oszilliert nun mit hoher Frequenz (rote Bereiche in A5, Maxima sind durch weiße Kreuze markiert). Das Potenzial der ventralen Zelle (rechts) schwankt nun mit niedriger Frequenz (rote Bereiche in B5, Maxima sind durch weiße Kreuze markiert)

© The Journal of Neuroscience
Download (396.4 kB)