Mit Mikrobläschen und Goldnanopartikeln

RUB » Pressestelle » Presseinformationen » Kategorie Forschung » Presseinformation 58
Nummer 58 - Bochum, 22.02.2010

Mit Mikrobläschen und Goldnanopartikeln

Tumorbehandlungskonzepte beschleunigen

HighTech.NRW fördert RUB-Medizintechniker

Ein neues Bildgebungsverfahren für die Tumordiagnostik und -behandlung entwickeln Bochumer Forscher am Lehrstuhl für Medizintechnik: Erstmals kombinieren sie Mikrobläschen und Goldnanopartikel zu einem Kontrastmittel, das nicht nur den Ort eines Tumors anzeigt, sondern auch seine Struktur. Zu Beginn des Jahres 2010 fiel der Startschuss für das Kooperationsvorhaben „ForSaTum“. Ziel ist, neue Konzepte zur Tumorbehandlung zu entwickeln und beschleunigt umzusetzen. Ein Schwerpunkt liegt auf der nicht-invasiven Bildgebung physiologischer und molekularer Vorgänge in Tumoren. Forscher um Prof. Dr. Georg Schmitz (Fakultät für Elektrotechnik und Informationstechnik der RUB) sind als Kooperationspartner an dem Projekt beteiligt. Sie erhalten 1,2 Millionen Euro für drei Jahre

Nachweis tumorspezifischer Kontrastmittel

„Wir entwickeln in unserem Teilprojekt ein Abbildungssystem, das die beiden Verfahren mit Mikrobläschen und Goldnanopartikeln integriert und quantitative Messungen ermöglicht“, so Prof. Schmitz. „Dabei entstehen Bildgebungsverfahren, mit denen wir möglichst geringe Mengen dieser tumorspezifischen Kontrastmittel nachweisen können.“ Die mikrometergroßen Gasbläschen werden durch Hüllen stabilisiert, auf denen Moleküle angebracht sind, die sich im Tumorgewebe binden. Akustische Verfahren in der Ultraschallbildgebung machen dieses Kontrastmittel dann sichtbar.

Akustische und photoakustische Verfahren

Das Nachweisverfahren ist so hochgenau, dass es selbst einzelne Mikrobläschen anzeigt. Da der Einsatz auf das Gefäßsystem beschränkt ist, untersuchen die Bochumer Forscher auch photoakustische Verfahren. Hierbei verwenden sie als Kontrastmittel beispielsweise Goldnanopartikel, die tiefer ins Gewebe eindringen und über entsprechende Beschichtungen tumorspezifisch binden. Sie werden mit einem Laserpuls zur Schallemission angeregt. Die im Ultraschallbild dargestellten Echos sollen in Zukunft Auskunft über die physiologischen Vorgänge im Tumorgewebe geben.

Erforschung nicht-invasiver Bildgebung

„Viele onkologische Diagnose- und Therapieansätze scheitern an hohen Entwicklungskosten und mangelnder klinischer Effizienz“, erklärt Prof. Fabian Kiessling, Lehrstuhl für Experimentelle Molekulare Bildgebung an der RWTH Aachen und Leiter des Konsortiums ForSaTum. „Nicht-invasive Bildgebung ermöglicht die Erhebung physiologischer und molekularer Informationen, die die Aussagekraft präklinischer Studien erhöhen und die Zahl klinisch scheiternder Behandlungsansätze vermindern kann. Zudem senkt sie deutlich die Entwicklungskosten“, so Prof. Kiessling weiter.

Kooperation mit RWTH Aachen und Industriepartnern

Das Verbundprojekt „Forschungssatellit für eine beschleunigte Umsetzung neuer Tumorbehandlungskonzepte“, kurz ForSaTum, wird als ein Sieger des Wettbewerbs HighTech.NRW vom Ministerium für Innovation, Wissenschaft, Forschung und Technologie des Landes NRW in einer dreijährigen Laufzeit mit 7,6 Millionen Euro gefördert – mit Mitteln des EU-NRW Ziel 2-Programms „Regionale Wettbewerbsfähigkeit und Beschäftigung 2007 – 2013“ (EFRE). Zusätzlich bringen die beteiligten Projektpartner 3,6 Millionen Euro auf. Dem Bochumer Lehrstuhl für Medizintechnik stehen 1,2 Millionen Euro zur Durchführung des Projektes zur Verfügung. Neben den Forschungseinrichtungen der Ruhr-Universität Bochum und RWTH Aachen sind Industriepartner aus ganz NRW wie Philips, AplaGen, PharmedArtis, Kairos, ITZ Medicom, Digital Medics, invivoContrast und das Aachener Kompetenzzentrum Medizintechnik (AKM) beteiligt.

Redaktion

Jens Wylkop
Pressestelle RUB

Weitere Informationen

Prof. Dr.-Ing. Georg Schmitz, Lehrstuhl für Medizintechnik der RUB, Fakultät für Elektrotechnik und Informationstechnik, Tel. 0234/32 27573
georg.schmitz@rub.de

 

Ultraschall

Hochfrequentes Ultraschallbild eines Tumors (links) und überlagerte Analyse der Einströmung von Mikrobläschen in die Blutgefäße des Tumors (rechts)

Download (498.9 kB)